
Daily Plan

Anthony Sorace
a.9srv.net

Strand 1 Technologies

ABSTRACT

This report describes the current set of plain text files and short
scripts I use to track my day�s work items and produce a log of past work.
The system produces a historical set of daily files, pushes to both finger
and (indirectly) the web, includes optional carry-forward of unfinished
tasks, and uses mostly unstructured text for high flexibility.

The system described can be found at http://txtpunk.com/daily/.

1. Introduction

For several years I have found it helpful to create a daily list of tasks I�m hoping to
accomplish for the day. This has evolved over time from a simple bullet list to some­
thing which adds prose descriptions of the work to be done. In addition to tracking the
tasks themselves, the prose helps refresh my thinking about a problem when I�ve not
worked on it for some time (often just a weekend). This has been particularly helpful as
my work schedule has become more erratic.

This system consists of a mkfile and two support tools to work with a set of plain
text files, formatted with one formatting rule and a few conventions, which produce to-
do files for "today" and "tomorrow". Over time, the system builds up an archive of
these, which can be helpful for many purposes, including simply getting an overview of
what was done over a given timeframe (useful for, say, putting together yearly reports or
evaluations).

In addition to the standard Plan 9 tools, the system described depends on
datefmt¹. It can also run on unix using plan9port.

2. The Daily Files

All the content in the system is a series of plain text files with very minimal format­
ting rules. The files conventionally consist of prose describing the work to be done on
that day, followed by checklist items representing specific tasks. The checklist items
can be interspersed with the prose or consolidated at the end of the file. The only real
formatting rule is that checklist items must begin each line with a ☐ followed by either a
space or tab. This character is used to identify incomplete items for the "carry forward"
process (described below). By convention and for symmetry, I change that to ☑ when a
task is completed. A representative sample for today:

¹: http://a.9srv.net/src/index.html#datefmt

March 4, 2024

­ 2 ­

I got the �daily� writeup done yesterday, but found I
don�t seem to have a troff font which has the checkbox
characters in it. Let�s fix that and get it published.

☑ Fix font issue in "daily" lab report.
☐ Get the "daily" lab report published.

Note that in this example the checkboxes are the first character on the line, followed by
a tab character; the other non-blank lines begin with one tab, although that is not
required.

3. The Workday

I start my workday by running mk (which runs the workday target) and, most days,
cf to look for unfinished items from yesterday. The mkfile will create the files, if
needed, and then use B to open them in your editor of choice. The files can be edited
and saved as normal. After initially updating today�s file, I run mk plan (described
below) and run it again whenever I wish to update progress (typically at the end of the
day and when I finish a set of checkboxes associated with a prose paragraph).

When it looks like I�m not going to get to a task today, or working on part of a task
reveals additional work, new tasks get added to the "tomorrow" file². A task item gets
added, with prose describing how it came up and any other context that might be help­
ful when I get back to the work.

4. Making a Plan

The original version of the daily task files, dating from 2004, only included the
checklist items³. I used these intermittently for several years, but eventually found the
checklists didn�t offer the context I wanted when I had breaks on a task for more than a
few days.

I have previously written a finger servert. Until recently, I�d mostly used that to
advertise relatively static data, like contact information, organizational affiliation, or very
high-level project descriptions. At the beginning of 2024, as part of a larger project to
revisit how I was tracking (and focusing on) my technical projects, I started using the
plan file in the more traditional way, as a prose description of what I was working on
now. Writing out a very short prose description of what I was trying to accomplish for
the day proved quite helpful. I soon added a checklist section to the bottom of the file.
This helped me tell what remained to be done at a glance, and also helped track things
between days. Frequently, a checklist item would persist for a few days, but the prose
description accompanying it would change as I worked on the problem. In combination,
these became more productive than I�d expected.

I soon wanted a way to archive my plan files so that, for items which took more
than a day or two to complete, I could remind myself of my thinking and approach to
the problem when I�d last worked on it. As I was thinking about how to archive these, I
realized I�d started recreating the daily files I�d used years previous. Since those had
years of history behind them and had been helpful at the time, I decided to return to
those and integrate the plan file into it.

² Shortly after I started using this system, I discovered Bullet Journals, and have been happily using

the paper versions since. That has suggested several additions to this system, most notably a "fu­

ture" list for things which come up like this but aren�t expected to get attention tomorrow.

³ In the original version, each line was numbered, and the number was manually replaced with a "�"

(using the square root symbol as a stand-in for a proper check) when the task was completed. The

carry-forward script simply copied all lines not starting with �.

t See http://txtpunk.com/finger.

March 4, 2024

­ 3 ­

In the mkfile which controls this system, there is a target, plan, which will take
today�s file (and tomorrow�s, if it is non-empty), prepend a date header, and write it to
$home/lib/plan. My web server separately includes rules to check for updates to
that file (and a few others) to update a /now page on my web server, and also build an
archive of these files in /plans.

5. The Archive

Running mk archive will move any files in the current directory with names
matching the pattern used for naming daily files, excluding those for today and tomor­
row, into a directory named by the year and date, YYYY/MM; the directory will be created
if needed. Note that this will include any future files beyond tomorrow. This system is
not suited for long-term planning; if you�d like to use it that way, modify the grep −v
invocation in plan target of mkfile. mk plan is suitable for automating with cron, but I
do it manually, when it feels like enough work is at natural transition points. I�ve tried
rules like "archive things more than a month old", but no such rules have felt correct
enough to bother automating.

6. Future Work

The old daily files were useful for years, and adding in the prose text I started
doing when playing with finger has addressed the main thing that caused me to stop
using them. The current setup is helpful and productive, but a few lower-priority pain
points remain.

The first of two main points of frustration is the fact that some of the content in
these files ends up duplicating my work log, $home/lib/work, which is also used for
time tracking and invoice generation. That file is much more focused on "work done"
and descriptions tend to be shorter than the prose in these daily files, but it also often
contains the resolutions to the work items described here. It would be nice for these to
be less separate.

The second significant pain point is disconnected operation. There is no synchro­
nization or conflict resolution if I edit some of these files on my laptop vs. my cpu
server, although in practice that comes up rarely. The fact these are unstructured, short
text files makes it easy to sync manually, but that�s far from ideal � especially having to
remember to do so. I�d like to automate that using replica; that should probably also
include products of this, like the plan file.

Arguably, references like "yesterday" and "tomorrow" should respect weekends, but
my work schedule is such that it hasn�t been worth implementing. I would like to make
cf look for the latest file before today, rather than just yesterday.

cf should be a target in the mkfile so one could (optionally) include it as a target
in the workday target.

Finally, I don�t like the manual formatting with |f; I�ll probably automate that at
some point.

March 4, 2024

