
Sunrise

DRAFT

Anthony Sorace
a.9srv.net

Strand 1 Technologies

ABSTRACT

DRAFT Our lab includes a variety of older Sun hardware

1. Introduction

I have a collection of older Sun systems which I would like to use. This set cur
rently includes:

sysname model RAM___
arabica JavaStation___
kona JavaStation___

bluemountain JavaStation___
solar Ultra 5___

SPARCstation 20 MP 256 MB___
SPARCstation 2 64 MB___

All of these systems lack integrated storage; the JavaStations have no capability for
internal storage, the Ultra 5 has a bad disk, and the SPARCstations were obtained with
out hard disks. I would like to be able to boot each of these over the network and run
different systems on each. This era of Sun systems have good capabilities for network
booting, although the procedure differs quite a bit from more modern systems.

2. Get an IP address

All of these systems are able to boot over the network; they begin this process
using bootp to obtain an IP address (they will also use the address of the responding
server later). This relies on some information stored in NVRAM, but all of this hardware
is old enough that the NVRAM battery is dead. Unfortunately, this era of Sun hardware
all used NVRAM chips where the battery is integrated; replacing the battery involves
some degree of surgery on the chip itself. The configuration stored by the NVRAM can
be entered at the serial console, but will be lost upon each power cycle¹. To avoid man
ually re-entering this information on each boot, a new script, bootscript, provides it.
Invoked as bootscript <sysname> <device>, it will look up the IP address for

¹ Settings will sometimes be preserved across very short power off/on cycles, but the period is too

unpredictable and too short to be useful.

November 15, 2023

 2

sysname in ndb, attach to a serial console on device, and prompt the user to power on
the system. It will then monitor the output from the console and provide the needed
settings.

In the representative session below, :; is the prompt and lines following that are user
input.

:; cat /dev/eia2status
b28800 c0 d1 e0 l8 m0 pn r1 s1 i0
dev(2) type(0) framing(13637) overruns(0) berr(0) serr(0) cts
:; echo i99 > /dev/eia2ctl
:; :; echo f > /dev/eia2ctl
:; echo k > /dev/eia2ctl
:; echo h > /dev/eia2ctl
:; echo b9600 > /dev/eia2ctl
:; cat /dev/eia2status
b9600 c0 d1 e0 l8 m0 pn r0 s1 i99
dev(2) type(0) framing(22070) overruns(0) berr(0) serr(0) cts
:; bootscript arabica /dev/eia2
08 00 20 c0 ff ee c0ffee mkpl
Power on arabica now.
Starting real time clock...
Incorrect configuration checksum;
Setting NVRAM parameters to default values.
Setting diag-switch? NVRAM parameter to true
Probing CPU FMI,MB86904

The IDPROM contents are invalid

Initializing 40 megs of memory at addr 0
Boot device: /iommu/sbus/ledma@4,8400010/le@4,8c00000 File and args: /kona
Internal loopback test -- Did not receive expected loopback packet.

Can�t open boot device

ok set-defaults
Setting NVRAM parameters to default values.
ok setenv diag-switch? false
diag-switch? = false
ok 17 0 mkp
ok 08 00 20 c0 ff ee c0ffee mkpl
ok
ok
Target configured. To boot: �echo reset > /dev/eia2�

:; echo reset > /dev/eia2
:;

The device was manually powered on when instructed.

At the moment, bootscript stops short of instructing the Sun to actually boot, but pro
vides the instructions to reboot using the new configuration.

November 15, 2023

 3

2.1. Configuring the serial port

In most cases, bootscript is directly controlling a uart device. In such cases, there
are two configuration steps which should be considered. First, all of these systems
come up with their serial port configured to communicate at 9600 baud with 8 data bits,
no parity, and 1 stop bit (often written 9600,8,n,1). Serial ports on Plan 9 all come
up with 8 data bits, no parity, and 1 stop bit by default, but the baud rate cany vary. Set
it before proceeding with echo b9600 > /dev/eia2ctl, (replacing
/dev/eia2ctl with the appropriate control file for your serial console).

Second, several of the serial consoles on our Sun systems are connected to a Rasp
berry Pi using a tll-rs232 adapter as described in Setting up RS-232 on a Raspberry Pi.
We do not have hardware flow control configured for these ports. If the serial port over
runs its buffer, garbage characters can be printed; while this clears itself when typing on
the console interactively, it can cause problems for expect(1) when used by sunrise to
automate the process.

This process was first started using the uartmini driver, which controls an older,
simpler, and less full-featured uart on the Raspberry Pi. With this uart, I was unable to
find a configuration the driver supported with proved "safe" for bootscript. Instead, a
new program, trickle, was written to simply copy the uart�s input and output at a slower
rate.

This was effective, but complicates the procedure. Instead, I�m now using the
pl011 driver, added to the Raspberry Pi kernel earlier this year. With that driver,
enabling the device FIFOs at a high level seems to be sufficent. To set the FIFOs to their
maximum level and flush any data in the queue, run:

echo i99 > /dev/eia2ctl
echo f > /dev/eia2ctl
echo h > /dev/eia2ctl

(again replacing /dev/eia2ctl as appropriate).

In the future, bootscript should do some of this configuration on its own, but that
is not in place. Since bootscript also allows connecting to a console over an existing
consolefs(4) connection; in those cases, we would expect consolefs to be responsible for
setting up the uart correctly. It is probably safe for bootscript to check for the existence
of a <device>ctl file and configure it appropriatly only if such a file exists.

3. Load a Kernel

Having obtained their IP address, these SUN systems will attempt to load a kernel
using tftp. They will ask for a boot file reflecting the IP address and architecture of the
system. To support this without having to maintain a kernel image per system, Plan 9�s
tftpd offers some extra support. tftpd(8) states:

All requests for files with non-rooted file names are served starting at this
directory with the exception of files of the form xxxxxxxx.SUNyy. These are
Sparc kernel boot files where xxxxxxxx is the hex IP address of the machine
requesting the kernel and yy is an architecture identifier. Tftpd looks up the
file in the network database using ipinfo (see ndb(2)) and responds with the
boot file specified for that particular machine.

Unfortunately, a bug introduced several years ago prevents that from working. To cor
rect it and restore the documented functionality, change the line

if(suffix-name != 8 || (strcmp(suffix, "") != 0 && strcmp(suffix, ".SUN") != 0))

to

November 15, 2023

 4

if(suffix-name != 8 || (strcmp(suffix, "") != 0 && strncmp(suffix, ".SUN", 4) != 0))

and recompile tftpd. Then ensure that your ndb database contains en entry for the
Sun�s IP address with a bootf value pointing to the desired kernel (it needn�t be in
/lib/tftpd; anywhere in the namespace tftpd can see is fine).

November 15, 2023

